Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
JACC Basic Transl Sci ; 9(3): 414-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559627

RESUMO

Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.

2.
J Clin Invest ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564300

RESUMO

Nuclear factor kappa-B (NFκB) is activated in arrhythmogenic cardiomyopathy (ACM) patient-derived iPSC-cardiac myocytes under basal conditions and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single cell RNA sequencing to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA sequencing and cellular indexing of transcriptomes and epitomes (CITE-seq) studies revealed marked pro-inflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells and fibroblasts in the pathogenesis of ACM.

3.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559055

RESUMO

Novel immune checkpoint therapeutics including CD40 agonists have tremendous promise to elicit antitumor responses in patients resistant to current therapies. Conventional immune checkpoint inhibitors (PD-1/PD-L1, CTLA-4 antagonists) are associated with serious adverse cardiac events including life-threatening myocarditis. However, little is known regarding the potential for CD40 agonists to trigger myocardial inflammation or myocarditis. Here, we leveraged genetic mouse models, single cell sequencing, and cell depletion studies to demonstrate that an anti-CD40 agonist antibody reshapes the cardiac immune landscape through activation of CCR2 + macrophages and subsequent recruitment of effector memory CD8 T-cells. We identify a positive feedback loop between CCR2 + macrophages and CD8 T-cells driven by IL12b, TNF, and IFN-γ signaling that promotes myocardial inflammation and show that prior exposure to CD40 agonists sensitizes the heart to secondary insults and accelerates LV remodeling. Collectively, these findings highlight the potential for CD40 agonists to promote myocardial inflammation and potentiate heart failure pathogenesis.

4.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645235

RESUMO

Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM. Significance statement: Dilated cardiomyopathy (DCM), a leading cause of heart failure, is characterized by the inability of the heart to perfuse the body at normal filling pressures. There are multiple causes of DCM, including point mutations in sarcomeric proteins, but most patients receive similar courses of treatment, regardless of the underlying cause of the DCM. Many patients remain unserved by current therapies, and there is a need for new approaches. Here, we use multiscale experimental and computational approaches to demonstrate how knowledge of molecular mechanism can be harnessed to accurately predict the effects of a patient-specific mutation and responses to presumptive therapeutics. Our approach lays the foundation for a precision medicine approach to DCM.

5.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559046

RESUMO

Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.

6.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633771

RESUMO

Objective: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia.2,6,7 Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients.3,8,9 However, the effects of taVNS on cardiovascular dynamics in critically ill patients like those with SAH have not yet been investigated. Given the association between cardiac complications and elevated risk of poor clinical outcomes after SAH, it is essential to characterize the cardiovascular effects of taVNS to ensure this approach is safe in this fragile population4. Therefore, we assessed the impact of both acute taVNS and repetitive taVNS on cardiovascular function in this study. Methods: In this randomized clinical trial, 24 SAH patients were assigned to either a taVNS treatment or a Sham treatment group. During their stay in the intensive care unit, we monitored patient electrocardiogram (ECG) readings and vital signs. We compared long-term changes in heart rate, heart rate variability, QT interval, and blood pressure between the two groups. Additionally, we assessed the effects of acute taVNS by comparing cardiovascular metrics before, during, and after the intervention. We also explored rapidly responsive cardiovascular biomarkers in patients exhibiting clinical improvement. Results: We found that repetitive taVNS did not significantly alter heart rate, corrected QT interval, blood pressure, or intracranial pressure. However, taVNS increased overall heart rate variability and parasympathetic activity from 5-10 days after initial treatment, as compared to the sham treatment. Acutely, taVNS increased heart rate, blood pressure, and peripheral perfusion index without affecting the corrected QT interval, intracranial pressure, or heart rate variability. The acute post-treatment elevation in heart rate was more pronounced in patients who experienced a decrease of more than 1 point in their Modified Rankin Score at the time of discharge. Conclusions: Our study found that taVNS treatment did not induce adverse cardiovascular effects, such as bradycardia or QT prolongation, supporting its development as a safe immunomodulatory treatment approach for SAH patients. The observed acute increase in heart rate after taVNS treatment may serve as a biomarker for SAH patients who could derive greater benefit from this treatment.

7.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659908

RESUMO

Mechanical unloading and circulatory support with left ventricular assist devices (LVADs) mediate significant myocardial improvement in a subset of advanced heart failure (HF) patients. The clinical and biological phenomena associated with cardiac recovery are under intensive investigation. Left ventricular (LV) apical tissue, alongside clinical data, were collected from HF patients at the time of LVAD implantation (n=208). RNA was isolated and mRNA transcripts were identified through RNA sequencing and confirmed with RT-qPCR. To our knowledge this is the first study to combine transcriptomic and clinical data to derive predictors of myocardial recovery. We used a bioinformatic approach to integrate 59 clinical variables and 22,373 mRNA transcripts at the time of LVAD implantation for the prediction of post-LVAD myocardial recovery defined as LV ejection fraction (LVEF) ≥40% and LV end-diastolic diameter (LVEDD) ≤5.9cm, as well as functional and structural LV improvement independently by using LVEF and LVEDD as continuous variables, respectively. To substantiate the predicted variables, we used a multi-model approach with logistic and linear regressions. Combining RNA and clinical data resulted in a gradient boosted model with 80 features achieving an AUC of 0.731±0.15 for predicting myocardial recovery. Variables associated with myocardial recovery from a clinical standpoint included HF duration, pre-LVAD LVEF, LVEDD, and HF pharmacologic therapy, and LRRN4CL (ligand binding and programmed cell death) from a biological standpoint. Our findings could have diagnostic, prognostic, and therapeutic implications for advanced HF patients, and inform the care of the broader HF population.

8.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38463975

RESUMO

Previous studies have implicated persistent innate immune signaling in the pathogenesis of arrhythmogenic cardiomyopathy (ACM), a familial non-ischemic heart muscle disease characterized by life-threatening arrhythmias and progressive myocardial injury. Here, we provide new evidence implicating inflammatory lipid autocoids in ACM. We show that specialized pro-resolving lipid mediators are reduced in hearts of Dsg2mut/mut mice, a well characterized mouse model of ACM. We also found that ACM disease features can be reversed in rat ventricular myocytes expressing mutant JUP by the pro-resolving epoxy fatty acid (EpFA) 14,15-eicosatrienoic acid (14-15-EET), whereas 14,15-EE-5(Z)E which antagonizes actions of the putative 14,15-EET receptor, intensified nuclear accumulation of the desmosomal protein plakoglobin. Soluble epoxide hydrolase (sEH), an enzyme that rapidly converts pro-resolving EpFAs into polar, far less active or even pro-inflammatory diols, is highly expressed in cardiac myocytes in Dsg2mut/mut mice. Inhibition of sEH prevented progression of myocardial injury in Dsg2mut/mut mice and led to recovery of contractile function. This was associated with reduced myocardial expression of genes involved in the innate immune response and fewer pro-inflammatory macrophages expressing CCR2, which mediate myocardial injury in Dsg2mut/mut mice. These results suggest that pro-inflammatory eicosanoids contribute to the pathogenesis of ACM and, further, that inhibition of sEH may be an effective, mechanism-based therapy for ACM patients.

9.
J Nucl Med ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548349

RESUMO

Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.

10.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488011

RESUMO

Ischemia/reperfusion injury-mediated (IRI-mediated) primary graft dysfunction (PGD) adversely affects both short- and long-term outcomes after lung transplantation, a procedure that remains the only treatment option for patients suffering from end-stage respiratory failure. While B cells are known to regulate adaptive immune responses, their role in lung IRI is not well understood. Here, we demonstrated by intravital imaging that B cells are rapidly recruited to injured lungs, where they extravasate into the parenchyma. Using hilar clamping and transplant models, we observed that lung-infiltrating B cells produce the monocyte chemokine CCL7 in a TLR4-TRIF-dependent fashion, a critical step contributing to classical monocyte (CM) recruitment and subsequent neutrophil extravasation, resulting in worse lung function. We found that synergistic BCR-TLR4 activation on B cells is required for the recruitment of CMs to the injured lung. Finally, we corroborated our findings in reperfused human lungs, in which we observed a correlation between B cell infiltration and CM recruitment after transplantation. This study describes a role for B cells as critical orchestrators of lung IRI. As B cells can be depleted with currently available agents, our study provides a rationale for clinical trials investigating B cell-targeting therapies.


Assuntos
Monócitos , Traumatismo por Reperfusão , Humanos , Receptor 4 Toll-Like/genética , Pulmão , Isquemia , Receptores de Antígenos de Linfócitos B
11.
Circulation ; 149(1): 48-66, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37746718

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Assuntos
Inibidores de Checkpoint Imunológico , Miocardite , Humanos , Camundongos , Animais , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos T CD8-Positivos , Miocardite/induzido quimicamente , Miocardite/metabolismo , Receptor de Morte Celular Programada 1 , Antígeno CTLA-4 , Ligantes , Quimiocinas/metabolismo , Macrófagos/metabolismo , RNA/metabolismo
12.
Cancer Genet ; 280-281: 1-5, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056049

RESUMO

BACKGROUND: Only rare cases of acute myeloid leukemia (AML) have been shown to harbor a t(8;11)(p11.2;p15.4). This translocation is believed to involve the fusion of NSD3 or FGFR1 with NUP98; however, apart from targeted mRNA quantitative PCR analysis, no molecular approaches have been utilized to define the chimeric fusions present in these rare cases. CASE PRESENTATION: Here we present the case of a 51-year-old female with AML with myelodysplastic-related morphologic changes, 13q deletion and t(8;11), where initial fluorescence in situ hybridization (FISH) assays were consistent with the presence of NUP98 and FGFR1 rearrangements, and suggestive of NUP98/FGFR1 fusion. Using a streamlined clinical whole-genome sequencing approach, we resolved the breakpoints of this translocation to intron 4 of NSD3 and intron 12 of NUP98, indicating NUP98/NSD3 rearrangement as the likely underlying aberration. Furthermore, our approach identified small variants in WT1 and STAG2, as well as an interstitial deletion on the short arm of chromosome 12, which were cryptic in G-banded chromosomes. CONCLUSIONS: NUP98 fusions in acute leukemia are predictive of poor prognosis. The associated fusion partner and the presence of co-occurring mutations, such as WT1, further refine this prognosis with potential clinical implications. Using a clinical whole-genome sequencing analysis, we resolved t(8;11) breakpoints to NSD3 and NUP98, ruling out the involvement of FGFR1 suggested by FISH while also identifying multiple chromosomal and sequence level aberrations.


Assuntos
Leucemia Mieloide Aguda , Feminino , Humanos , Pessoa de Meia-Idade , Hibridização in Situ Fluorescente , Sequência de Bases , Leucemia Mieloide Aguda/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Translocação Genética
13.
Am J Transplant ; 24(2): 280-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37619922

RESUMO

The presence of bronchus-associated lymphoid tissue (BALT) in donor lungs has been suggested to accelerate graft rejection after lung transplantation. Although chronic smoke exposure can induce BALT formation, the impact of donor cigarette use on alloimmune responses after lung transplantation is not well understood. Here, we show that smoking-induced BALT in mouse donor lungs contains Foxp3+ T cells and undergoes dynamic restructuring after transplantation, including recruitment of recipient-derived leukocytes to areas of pre-existing lymphoid follicles and replacement of graft-resident donor cells. Our findings from mouse and human lung transplant data support the notion that a donor's smoking history does not predispose to acute cellular rejection or prevent the establishment of allograft acceptance with comparable outcomes to nonsmoking donors. Thus, our work indicates that BALT in donor lungs is plastic in nature and may have important implications for modulating proinflammatory or tolerogenic immune responses following transplantation.


Assuntos
Transplante de Pulmão , Tecido Linfoide , Camundongos , Humanos , Animais , Transplante de Pulmão/efeitos adversos , Tolerância Imunológica , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Pulmão , Brônquios , Fumar
14.
Transplantation ; 108(2): 539-544, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37638881

RESUMO

BACKGROUND: Antibody-mediated rejection (AMR) remains a significant cause of heart transplant mortality with few effective therapies. METHODS: This study aimed to describe initial experience of using interleukin-6 receptor blockade with tocilizumab in the treatment of acute cardiac AMR at Barnes-Jewish Hospital/Washington University Transplant Center from July 2017 to May 2021 (n = 7). Clinical, echocardiographic, and serum alloantibody data were analyzed before and after treatment. RESULTS: All participants demonstrated marked improvement in functional status. Echocardiographic data following 4-6 mo of tocilizumab revealed significant improvements in biventricular systolic function for all participants. Consistent reductions in donor-specific HLA or angiotensin type I receptor antibodies were not observed, suggesting that tocilizumab may act downstream of antibody production. No patient experienced drug-related complications that necessitated discontinuation of therapy. CONCLUSIONS: These findings provide initial insights into the safety and efficacy of interleukin-6 receptor blockade in the treatment of cardiac AMR and support the design of larger prospective studies.


Assuntos
Transplante de Rim , Humanos , Estudos Prospectivos , Estudos de Viabilidade , Antígenos HLA , Isoanticorpos , Receptores de Interleucina-6 , Rejeição de Enxerto/etiologia
15.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38076993

RESUMO

This study, utilizing SBF-SEM, reveals structural alterations in mitochondria and myofibrils in human heart failure (HF). Mitochondria in HF show changes in structure, while myofibrils exhibit increased cross-sectional area and branching. Metabolomic and lipidomic analyses indicate concomitant dysregulation in key pathways. The findings underscore the need for personalized treatments considering individualized structural changes in HF.

16.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961519

RESUMO

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

17.
Med ; 4(12): 928-943.e5, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38029754

RESUMO

BACKGROUND: Rapidly dividing cells are more sensitive to radiation therapy (RT) than quiescent cells. In the failing myocardium, macrophages and fibroblasts mediate collateral tissue injury, leading to progressive myocardial remodeling, fibrosis, and pump failure. Because these cells divide more rapidly than cardiomyocytes, we hypothesized that macrophages and fibroblasts would be more susceptible to lower doses of radiation and that cardiac radiation could therefore attenuate myocardial remodeling. METHODS: In three independent murine heart failure models, including models of metabolic stress, ischemia, and pressure overload, mice underwent 5 Gy cardiac radiation or sham treatment followed by echocardiography. Immunofluorescence, flow cytometry, and non-invasive PET imaging were employed to evaluate cardiac macrophages and fibroblasts. Serial cardiac magnetic resonance imaging (cMRI) from patients with cardiomyopathy treated with 25 Gy cardiac RT for ventricular tachycardia (VT) was evaluated to determine changes in cardiac function. FINDINGS: In murine heart failure models, cardiac radiation significantly increased LV ejection fraction and reduced end-diastolic volume vs. sham. Radiation resulted in reduced mRNA abundance of B-type natriuretic peptide and fibrotic genes, and histological assessment of the LV showed reduced fibrosis. PET and flow cytometry demonstrated reductions in pro-inflammatory macrophages, and immunofluorescence demonstrated reduced proliferation of macrophages and fibroblasts with RT. In patients who were treated with RT for VT, cMRI demonstrated decreases in LV end-diastolic volume and improvements in LV ejection fraction early after treatment. CONCLUSIONS: These results suggest that 5 Gy cardiac radiation attenuates cardiac remodeling in mice and humans with heart failure. FUNDING: NIH, ASTRO, AHA, Longer Life Foundation.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Remodelação Ventricular , Cardiomiopatias/complicações , Insuficiência Cardíaca/radioterapia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Função Ventricular , Fibrose
18.
Artigo em Inglês | MEDLINE | ID: mdl-37993313

RESUMO

Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.

19.
J Nucl Med ; 64(Suppl 2): 39S-48S, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918845

RESUMO

Growing evidence implicates the immune system as a critical mediator of cardiovascular disease progression and a viable therapeutic target. Increased inflammatory cell activity is seen in the full spectrum of disorders from early-stage atherosclerosis through myocardial infarction, cardiomyopathy, and chronic heart failure. Although therapeutic strategies to modulate inflammation have shown promise in preclinical animal models, efficacy in patients has been modest owing in part to the variable severity of inflammation across individuals. The diverse leukocyte subpopulations involved in different aspects of heart disease pose a challenge to effective therapy, wherein adverse and beneficial aspects of inflammation require appropriate balance. Noninvasive molecular imaging enables tissue-level interrogation of inflammatory cells in the heart and vasculature to provide mechanistic and temporal insights into disease progression. Although clinical imaging has relied on 18F-FDG as a nonselective and crude marker of inflammatory cell activity, new imaging probes targeting cell surface markers of different leukocyte subpopulations present the opportunity to visualize and quantify distinct phases of cardiac and vessel wall inflammation. Similarly, therapies are evolving to more effectively isolate adverse from beneficial cell populations. This parallel development of immunocardiology and molecular imaging provides the opportunity to refine treatments using imaging guidance, building toward mechanism-based precision medicine. Here, we discuss progress in molecular imaging of immune cells in cardiology from use of 18F-FDG in the past to the present expansion of the radiotracer arsenal and then to a future theranostic paradigm of tracer-therapy compound pairs with shared targets. We then highlight the critical experiments required to advance the field from preclinical concept to clinical reality.


Assuntos
Fluordesoxiglucose F18 , Infarto do Miocárdio , Animais , Humanos , Fluordesoxiglucose F18/uso terapêutico , Inflamação/diagnóstico por imagem , Coração , Imagem Molecular
20.
Cell Immunol ; 393-394: 104774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37839157

RESUMO

Transplantation is a life-saving therapy for patients with end-stage organ disease. Successful outcomes after transplantation require mitigation of the post-transplant inflammatory response, limiting alloreactivity, and prevention of organ rejection. Traditional immunosuppressive regimens aim to dampen the adaptive immune response; however, recent studies have shown the feasibility and efficacy of targeting the innate immune response. Necroinflammation initiated by donor organ cell death is implicated as a critical mediator of primary graft dysfunction, acute rejection, and chronic rejection. Ferroptosis is a form of regulated cell death that triggers post-transplantation inflammation and drives the activation of both innate and adaptive immune cells. There is a growing acceptance of the clinical relevance of ferroptosis to solid organ transplantation. Modulating ferroptosis may be a potentially promising strategy to reduce complications after organ transplantation.


Assuntos
Ferroptose , Transplante de Órgãos , Humanos , Rejeição de Enxerto , Transplante Homólogo , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...